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ABSTRACT

We study biharmonic submanifolds of the Euclidean sphere that satisfy

certain geometric properties. We classify: (i) the biharmonic hypersur-

faces with at most two distinct principal curvatures; (ii) the conformally

flat biharmonic hypersurfaces. We obtain some rigidity results for pseudo-

umbilical biharmonic submanifolds of codimension 2 and for biharmonic

surfaces with parallel mean curvature vector field. We also study the type,

in the sense of B-Y. Chen, of compact proper biharmonic submanifolds

with constant mean curvature in spheres.
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1. Introduction

The study of biharmonic maps between Riemannian manifolds, as a general-

ization of harmonic maps, was suggested by J. Eells and J. H. Sampson in [9].

They define the energy of a smooth map φ : (M, g) → (N, h) between two

Riemannian manifolds, by E(φ) = 1
2

∫

M
|dφ|2 vg, and say that φ is harmonic

if it is a critical point of the energy. The Euler-Lagrange equation associated

to E is given by the vanishing of the tension field τ(φ) = trace∇dφ.

By integrating the square of the norm of the tension field one can consider

the bienergy of a smooth map φ, E2(φ) = 1
2

∫

M
|τ(φ)|2 vg, and call its critical

points biharmonic maps (see [17]). The first variation formula for the bienergy,

derived in [12], shows that the Euler-Lagrange equation corresponding to E2 is

given by the vanishing of the bitension field τ2(φ) = −Jφ(τ(φ)) = −∆τ(φ) −
trace RN (dφ, τ(φ))dφ, where Jφ is formally the Jacobi operator of φ. The

operator Jφ is obviously linear, thus any harmonic map is biharmonic. We call

proper biharmonic the non-harmonic biharmonic maps.

During the last decade important progress has been made in the study of

both the geometry and the analytic properties of biharmonic maps. In differ-

ential geometry, a special attention has been payed to the study of biharmonic

submanifolds, i.e., submanifolds such that the inclusion map is a biharmonic

map.

Moreover, the non-existence theorems for the case of non-positive sectional

curvature codomains, as well as the

Generalized Chen’s Conjecture: Biharmonic submanifolds of a non-posi-

tive sectional curvature manifold are minimal,

encouraged the study of proper biharmonic submanifolds in spheres and other

curved spaces [2, 3, 10, 11, 13, 15].

Although important results and examples were obtained, the classification of

proper biharmonic submanifolds in spheres is still an open problem.

This paper is fully devoted to the classification of proper biharmonic sub-

manifolds in spheres that satisfy certain geometric properties. It is organized

as follows. In the preliminary section, we gather some fundamental known re-

sults on proper biharmonic submanifolds of space forms and, in particular, of

the Euclidean sphere. This section also contains some basic information on
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finite type Euclidean submanifolds. Although defined in a different manner, fi-

nite type submanifolds are, in a natural way, solutions of a variational problem.

They are critical points of the volume functional for a certain class of directional

deformations (see [6]).

In the third section, we study the type of compact proper biharmonic sub-

manifolds of constant mean curvature in S
n and prove that, depending on the

value of the mean curvature, they are of 1−type or of 2−type as submanifolds

of R
n+1.

The fourth section is devoted to the complete classification of the proper bi-

harmonic hypersurfaces with at most two distinct principal curvatures in S
m+1.

We prove that they are open parts either of the hypersphere S
m(1/

√
2) or of the

Clifford tori S
m1(1/

√
2) × S

m2(1/
√

2), m1 + m2 = m, m1 6= m2 (Theorem 4.3).

A similar classification is obtained for conformally flat biharmonic hypersur-

faces in spheres. On the contrary, for the hyperbolic space H
m+1 we prove the

non-existence of such hypersurfaces.

In the last section, we prove that the pseudo-umbilical biharmonic submani-

folds in spheres have constant mean curvature and we give an estimate for their

scalar curvature. Then we classify the proper biharmonic pseudo-umbilical sub-

manifolds of codimension 2 (Theorem 5.3). We also prove that the only bihar-

monic surfaces with parallel mean curvature vector field in S
n are the minimal

surfaces of S
n−1(1/

√
2) (Theorem 5.6).

2. Preliminaries

2.1. Biharmonic submanifolds. Let φ : M → E
n(c) be the canonical inclu-

sion of a submanifold M in a constant sectional curvature c manifold, E
n(c).

The expressions assumed by the tension and bitension fields are

τ(φ) = mH, τ2(φ) = −m(∆H − mcH),

where H denotes the mean curvature vector field of M in E
n(c).

The attempt of classifying the biharmonic submanifolds in space forms was

initiated in [7] and [2] with the following characterization results, obtained by

splitting the bitension field in its normal and tangent components.

Theorem 2.1 ([2, 5]): The canonical inclusion φ : Mm → E
n(c) of a sub-

manifold M in an n-dimensional space form E
n(c) is biharmonic if and only



204 A. BALMUŞ, S. MONTALDO AND C. ONICIUC Isr. J. Math.

if

(2.1)







−∆⊥H − traceB(·, AH ·) + mcH = 0,

2 traceA∇⊥
(·)H

(·) + m
2 grad(|H |2) = 0,

where A denotes the Weingarten operator, B the second fundamental form, H

the mean curvature vector field, ∇⊥ and ∆⊥ the connection and the Laplacian

in the normal bundle of M in E
n(c).

For hypersurfaces, this result becomes

Proposition 2.2: Let M be a hypersurface of E
m+1(c). Then M is proper

biharmonic if and only if

(2.2)







∆⊥H − (mc − |A|2)H = 0,

2A
(

grad(|H |)
)

+ m|H | grad(|H |) = 0.

In the case of the hyperbolic space some non-existence results were given. We

recall here

Theorem 2.3 ([3]): Any biharmonic pseudo-umbilical submanifold Mm, m 6=
4, of the hyperbolic space H

n is minimal.

For the sphere, using the canonical inclusion in the Euclidean space, the next

result was obtained

Theorem 2.4 ([3]): If φ : (M, g) → S
n is a Riemannian immersion and ϕ = i◦φ,

where i : S
n → R

n+1 is the canonical inclusion, then

τ2(φ) = τ2(ϕ) + 2mτ(ϕ) + {2m2 − |τ(ϕ)|2}ϕ.

The first achievement towards the classification problem is represented by the

complete classification of proper biharmonic submanifolds of the 3-dimensional

unit Euclidean sphere, obtained in [2].

Theorem 2.5 ([2]): a) An arc length parameterized curve γ : I → S
3 is

proper biharmonic if and only if it is either the circle of radius 1/
√

2, or

a geodesic of the Clifford torus S
1(1/

√
2) × S

1(1/
√

2) ⊂ S
3 with slope

different from ±1.

b) A surface M is proper biharmonic in S
3 if and only if it is locally a piece

of S
2(1/

√
2) ⊂ S

3. Furthermore, if M is compact and orientable, then

it is proper biharmonic if and only if M = S
2(1/

√
2).
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Then, inspired by the 3-dimensional case, two methods for constructing

proper biharmonic submanifolds in S
n were given.

Theorem 2.6 ([3]): Let M be a minimal submanifold of S
n−1(a) ⊂ S

n. Then

M is proper biharmonic in S
n if and only if a = 1/

√
2.

Remark 2.7: a) This result proved to be quite useful for the construction

of proper biharmonic submanifolds in spheres. For instance, it implies

the existence of closed orientable embedded proper biharmonic surfaces

of arbitrary genus in S
4 (see [3]).

b) All minimal submanifolds of S
n−1(1/

√
2) ⊂ S

n are pseudo-umbilical,

have parallel mean curvature vector in S
n and |H | = 1.

Non pseudo-umbilical examples were also produced by proving the following

Theorem 2.8 ([3]): Let Mm1
1 and Mm2

2 be two minimal submanifolds of S
n1(r1)

and S
n2(r2), respectively, where n1 + n2 = n − 1, r2

1 + r2
2 = 1. Then M1 × M2

is proper biharmonic in S
n if and only if r1 = r2 = 1/

√
2 and m1 6= m2.

Remark 2.9: a) The proper biharmonic submanifolds of S
n constructed as

above are not pseudo-umbilical, but they have parallel mean curvature

vector field, thus constant mean curvature, i.e., constant norm of the

mean curvature vector field, and |H | ∈ (0, 1).

b) The generalized Clifford torus, S
n1(1/

√
2)×S

n2(1/
√

2), n1+n2 = n−1,

n1 6= n2, was the first example of proper biharmonic submanifold in S
n

(see [12]).

We end this section with a partial classification result for constant mean

curvature biharmonic submanifolds in spheres. The result was obtained in [14]

and due to its importance for our paper we shall present it with its proof.

Theorem 2.10 ([14]): Let M be a proper biharmonic submanifold with con-

stant mean curvature |H | in S
n. Then |H | ∈ (0, 1]. Moreover, if |H | = 1, then

M is a minimal submanifold of a hypersphere S
n−1(1/

√
2) ⊂ S

n.

Proof. Let M be a constant mean curvature biharmonic submanifold of S
n.

The first equation of (2.1) implies that

〈∆⊥H, H〉 = m|H |2 − |AH |2,

and by using the Weitzenböck formula,



206 A. BALMUŞ, S. MONTALDO AND C. ONICIUC Isr. J. Math.

1

2
∆|H |2 = 〈∆⊥H, H〉 − |∇⊥H |2,

it follows

(2.3) m|H |2 = |AH |2 + |∇⊥H |2.

Let now {Xi} be a local orthonormal basis such that AH(Xi) = λiXi. From

λi = 〈AH(Xi), Xi〉 = 〈B(Xi, Xi), H〉

and
∑

λi = m|H |2,
∑

(λi)
2 = |AH |2,

using (2.3) we obtain

(2.4)
∑

λi =
∑

(λi)
2 + |∇⊥H |2 ≥ (

∑

λi)
2

m
+ |∇⊥H |2.

Thus

m|H |2 ≥ m|H |4 + |∇⊥H |2.
Consequently, if |H | > 1, the last inequality leads to a contradiction.

If |H | = 1, then the last inequality implies ∇⊥H = 0 and
∑

(λi)
2 =

(
∑

λi)
2/m = m, thus we get λ1 = · · · = λm. Therefore, M is a minimal

submanifold of the hypersphere S
n−1(1/

√
2).

2.2. Pseudo-umbilical submanifolds in spheres.

Definition 2.11: A submanifold M of a Riemannian manifold N is said to be

pseudo-umbilical if there exists a function λ ∈ C∞(M), such that AH = λ Id,

where AH is the Weingarten operator associated to the mean curvature vector

field H of M in N .

Remark 2.12: If M is a pseudo-umbilical submanifold of N , one can immediately

prove that λ = |H |2.

We also recall here two important geometric properties of pseudo-umbilical

submanifolds in spheres.

Theorem 2.13 ([4, p. 173]): Let M be an m-dimensional pseudo-umbilical

submanifold of an n-dimensional unit Euclidean sphere S
n. Then the scalar

curvature s of M satisfies

s ≤ m(m − 1)(1 + |H |2).
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The equality holds if and only if M is contained in an m-sphere S
m

(

1/
√

1 + |H |2
)

of S
n.

Theorem 2.14 ([4, p. 180]): . Let Mm be a pseudo-umbilical submanifold in

S
m+2. If M has constant mean curvature, then M is either a minimal subman-

ifold of S
m+2 or a minimal hypersurface of a hypersphere of S

m+2.

2.3. Finite type submanifolds in Euclidean spaces.

Definition 2.15: An isometric immersion ϕ : M → R
n is called of finite type if

ϕ can be expressed as a finite sum of R
n-valued eigenfunctions of the Laplacian

∆ of M . When M is compact it is called of k-type if the spectral decomposition

of ϕ contains exactly k non-zero terms, excepting the center of mass.

The following result constitutes a useful tool in determining whether a com-

pact submanifold of R
n is of finite type.

Theorem 2.16 (Minimal Polynomial Criterion, [5, 6]): Let ϕ : Mm → R
n

be an isometric immersion of a compact Riemannian manifold M into R
n and

denote by H0 the mean curvature vector field of M in R
n. Then

a) M is of finite type if and only if there exists a non-trivial polynomial

Q(t) such that Q(∆)H0 = 0.

b) M is of finite type k if and only if there exists a unique monic (i.e. with

leading coefficient equal to 1) polynomial P (t) with exactly k distinct

positive roots, such that P (∆)H0 = 0.

3. The type of compact proper biharmonic submanifolds in spheres

In this section, by applying the preliminary results to the biharmonic case,

we intend to analyze the type of proper biharmonic submanifolds of S
n, as

submanifolds in R
n+1.

Theorem 3.1: Let Mm be a compact constant mean curvature, |H |2 = k,

submanifold in S
n. Then M is proper biharmonic if and only if

either

a) |H |2 = 1 and M is a 1-type submanifold of R
n+1 with eigenvalue λ =

2m,

or
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b) |H |2 = k ∈ (0, 1) and M is a 2-type submanifold of R
n+1 with the

eigenvalues λ1,2 = m(1 ±
√

k).

Proof. We apply Theorem 2.4. Denote by φ : M → S
n the inclusion of M in

S
n and by i : S

n → R
n+1 the canonical inclusion. Let ϕ : M → R

n+1, ϕ = i ◦φ,

be the inclusion of M in R
n+1. Denote by H the mean curvature vector field

of M in S
n and by H0 the mean curvature vector field of M in R

n+1.

The tension fields of the immersions φ and ϕ are related by

τ(ϕ) = τ(φ) − mϕ

and from here it follows that H0 = H − ϕ.

Also, from Theorem 2.4, we get that τ2(φ) = 0 if and only if

(3.1) ∆H0 − 2mH0 + m(|H |2 − 1)ϕ = 0.

There are two situations to be analyzed.

If |H |2 = 1, then ∆H0 − 2mH0 = 0, and Theorem 2.16 implies that M is a

1-type submanifold of R
n+1 with eigenvalue λ = 2m.

If |H |2 = k ∈ (0, 1), then equation (3.1) implies

0 = ∆∆H0 − 2m∆H0 + m(k − 1)∆ϕ

= ∆∆H0 − 2m∆H0 − m2(k − 1)H0.

The monic polynomial with positive distinct roots described in Theorem 2.16,

which provides the type of the submanifold M , is

P (∆) = ∆2 − 2m∆1 − m2(k − 1)∆0,

so M is a 2-type submanifold with eigenvalues λ1,2 = m(1 ±
√

k).

For the converse, let first M be a constant mean curvature |H | = 1 subman-

ifold of S
n. Suppose it is of 1−type with eigenvalue λ = 2m in R

n+1. This

means that ∆ϕ = 2mϕ, and, by applying ∆, it implies ∆H0 − 2mH0 = 0.

From here we see that M satisfies equation (3.1), i.e., it is biharmonic in S
n.

When |H |2 = k ∈ (0, 1) and M is a 2−type submanifold in R
n+1 with eigen-

values λ1,2 = m(1 ±
√

k) we have

ϕ = x1 + x2,

where ∆xi = λixi, i = 1, 2. Applying the Laplacian we obtain

H0 = −{x1 + x2 +
√

k(x1 − x2)} = −ϕ −
√

k(x1 − x2)



Vol. 168, 2008 CLASSIFICATION RESULTS... 209

and

∆H0 = −m{(k + 1)ϕ + 2(−ϕ − H0)} = −m{(k − 1)ϕ − 2H0}.

Finally, using (3.1), M is biharmonic in S
n.

Remark 3.2: Note that, using Theorem 2.10, we can conclude that all proper

biharmonic submanifolds of S
n with |H | = 1 are 1−type submanifolds in R

n+1,

independently on whether they are compact or not.

4. The classification of biharmonic hypersurfaces with at most two

distinct principal curvatures in spheres

We recall that if M is a proper biharmonic umbilical hypersurface in S
m+1,

then it is an open part of S
m(1/

√
2) and that there exist no proper biharmonic

umbilical hypersurfaces in R
m+1 or in the hyperbolic space H

m+1 .

Similarly to the case of the Euclidean space (see [8]), the study of proper

biharmonic hypersurfaces with at most two distinct principal curvatures con-

stitutes the next natural step for the classification of proper biharmonic hyper-

surfaces in space forms.

We underline the fact that there exist examples of hypersurfaces with at most

two distinct principal curvatures and non-constant mean curvature in any space

form. In the following we show that, by adding the hypothesis of biharmonicity,

the mean curvature proves to be constant.

Theorem 4.1: Let M be a hypersurface with at most two distinct principal

curvatures in E
m+1(c). If M is proper biharmonic in E

m+1(c), then it has

constant mean curvature.

Proof. If M is umbilical we immediately get to the conclusion.

For M non-umbilical, suppose that |H | is not constant. This, together with

the hypothesis for M to be proper biharmonic with at most two distinct prin-

cipal curvatures in E
m+1(c), implies the existence of an open subset U of M ,

with

(4.1)



























gradp f 6= 0,

f(p) > 0, ∀p ∈ U

k1(p) 6= k2(p),

m1, m2 constant,
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where, denoting by η the unit section in the normal bundle, f is the mean

curvature function of U in E
m+1(c), i.e. H = 1

m (traceA)η = fη, and k1, k2 are

the principal curvature functions w.r.t. η, with multiplicities m1, m2.

Under these hypotheses we shall prove that f is constant on U , contradicting

the condition gradp f 6= 0, ∀p ∈ U .

Since M is proper biharmonic in E
m+1(c), from (2.2) we have

(4.2)







∆f = (mc − |A|2)f,

A(grad f) = −m
2 f gradf.

Consider now X1 = gradf/| gradf | on U . Then X1 is a principal direction

with principal curvature k1 = −m
2 f . Suppose that there are m1 principal

directions of principal curvature k1 and m2 principal directions of principal

curvature k2 6= k1 and recall that mf = m1k1 + m2k2.

We shall use the moving frames method and denote by X1, {Xi}m1

i=2,

{Xα}m
α=m1+1 the orthonormal frame field of principal directions and by {ωa}m

a=1

the dual frame field of {Xa}m
a=1 on U .

Obviously,

Xi(f) = 〈Xi, gradf〉 = | gradf |〈Xi, X1〉 = 0, i = 2, . . . , m1

and analogously Xα(f) = 0, α = m1 + 1, . . . , m, thus

gradf = X1(f)X1.

We write

∇Xa = ωb
aXb, ωb

a ∈ C(T ∗U).

From the Codazzi equations for M we get, for distinct a, b, d = 1, . . . , m,

(4.3) Xa(kb) = (ka − kb)ω
b
a(Xb)

and

(4.4) (kb − kd)ω
d
b (Xa) = (ka − kd)ω

d
a(Xb).

We shall show, in the first place, that m1 = 1.

Consider in equation (4.3), a = 1 and b = i. This leads to X1(k1) = 0, thus

| grad f | = 0 on U , a contradiction. From here m1 = 1, thus

k2 =
3m

2(m − 1)
f.
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Consider now in (4.3), a = 1 and b = α. We obtain

(4.5) 3X1(f) = −(m + 2)fωα
1 (Xα).

For a = α and b = 1, as 0 = Xα(k1), equation (4.3) leads to ωα
1 (X1) = 0 and

we can write

(4.6) ωa
1 (X1) = 0, for a = 1, . . . , m.

From (4.4), for a = 1, b = α and d = β, with α 6= β, we get

(4.7) ωβ
1 (Xα) = 0, ∀α 6= β.

We now compute

∆f = −div(grad f) = −〈∇X1 grad f, X1〉 −
m

∑

α=2

〈∇Xα
gradf, Xα〉(4.8)

= −X1

(

X1(f)
)

− X1(f)

m
∑

α=2

ωα
1 (Xα).

By using (4.5) we get that

(4.9) f∆f = −fX1

(

X1(f)
)

+
3(m − 1)

m + 2

(

X1(f)
)2

.

As |A|2 = k2
1 + (m − 1)k2

2 = m2(m+8)
4(m−1) f2 and M is biharmonic,

∆f = (mc − |A|2)f =
(

mc − m2(m + 8)

4(m − 1)
f2

)

f,

and equation (4.9) becomes

(4.10) fX1

(

X1(f)
)

− 3(m − 1)

m + 2

(

X1(f)
)2 − m2(m + 8)

4(m − 1)
f4 + mcf2 = 0.

We shall now use the Gauss and the Cartan structural equations in order to

obtain other information on f . We have

dωα
1 = −

m
∑

a=1

ωa
1 ∧ ωa

α − (k1k2 + c)ω1 ∧ ωα,

thus, using equations (4.6) and (4.7), we get

(4.11) dωα
1 (X1, Xα) = −k1k2 − c =

3m2

4(m − 1)
f2 − c.
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On the other hand, from (4.6) and (4.7) we obtain ωα
1 = ωα

1 (Xα)ωα, thus

(4.5) implies

(4.12) 3X1(f)ωα = −(m + 2)fωα
1 .

By differentiating (4.12) we obtain

(4.13) 3d
(

X1(f)
)

∧ ωα + 3X1(f)dωα = −(m + 2)(df ∧ ωα
1 + fdωα

1 ).

Now, substituting

(

dX1(f) ∧ ωα
)

(X1, Xα) = X1

(

X1(f)
)

,

dωα(X1, Xα) = ωα
1 (Xα),

(df ∧ ωα
1 )(X1, Xα) = X1(f)ωα

1 (Xα)

in (4.13) and taking into account (4.11), we obtain

(4.14) fX1

(

X1(f)
)

− m + 5

m + 2

(

X1(f)
)2

+
m2(m + 2)

4(m − 1)
f4 − m + 2

3
cf2 = 0.

Consider now an arbitrary integral curve γ of X1 and denote by f ′ and f ′′

the first and the second derivatives of f along this curve. Equations (4.10) and

(4.14) become, respectively,

(4.15) ff ′′ − 3(m − 1)

m + 2
(f ′)2 − m2(m + 8)

4(m − 1)
f4 + mcf2 = 0

and

(4.16) ff ′′ − m + 5

m + 2
(f ′)2 +

m2(m + 2)

4(m − 1)
f4 − m + 2

3
cf2 = 0,

along γ.

Multiplying equation (4.15) by (m + 5) and equation (4.16) by −3(m − 1)

and summing up, we get

(4.17) (4 − m)ff ′′ =
m2(m2 + 4m + 9)

2(m − 1)
f4 − (m2 + 3m − 1)cf2.

For m = 4, equation (4.17) implies immediately that f is constant.

For m 6= 4, multiply equation (4.17) by f ′/f , integrate the result and obtain

(4.18) (f ′)2 =
m2(m2 + 4m + 9)

8(4 − m)(m − 1)
f4 − (m2 + 3m − 1)

2(4 − m)
cf2 + C.
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On the other hand, multiplying equation (4.15) by −1 and adding it to equa-

tion (4.16) leads to

(4.19) (f ′)2 =
m2(m + 5)(m + 2)

4(4 − m)(m − 1)
f4 − (2m + 1)(m + 2)

3(4 − m)
cf2

From (4.18) and (4.19) we conclude that f is the solution of a polynomial

equation with constant coefficients, thus f is constant along γ. Since γ is an

arbitrary integral curve for X1 we have X1(f) = 0 on U, thus f is constant.

To strengthen the Generalized Chen’s Conjecture, as an immediate conse-

quence of Theorem 4.1, we have the following non-existence result.

Theorem 4.2: There exist no proper biharmonic hypersurface with at most

two distinct principal curvatures in H
m+1.

Proof. Suppose that M is a proper biharmonic hypersurface with at most two

distinct principal curvatures in H
m+1. From Theorem 4.1, the mean curvature

of M is constant, and applying Proposition 2.2 we obtain |A|2 = −m and we

conclude.

The case of the sphere is essentially different. Theorem 4.1 proves to be the

main ingredient for the following complete classification of proper biharmonic

hypersurfaces with at most two distinct principal curvatures.

Theorem 4.3: Let Mm be a proper biharmonic hypersurface with at most two

distinct principal curvatures in S
m+1. Then M is an open part of S

m(1/
√

2) or

of S
m1(1/

√
2) × S

m2(1/
√

2), m1 + m2 = m, m1 6= m2.

Proof. By Theorem 4.1, the mean curvature of M in S
m+1 is constant and, by

using Proposition 2.2, we obtain |A|2 = m. These imply that M has constant

principal curvatures.

For |H |2 = 1 we conclude that M is an open part of S
m(1/

√
2).

For |H |2 ∈ (0, 1) we deduce that M has two distinct constant principal cur-

vatures. Proposition 2.5 in [16] implies that M is an open part of the product

of two spheres S
m1(a) × S

m2(b), such that a2 + b2 = 1, m1 + m2 = m. Since

M is biharmonic in S
m+1, from Theorem 2.8, it follows that a = b = 1/

√
2 and

m1 6= m2.

Remark 4.4: Note that, for m = 2, we recover the result in Theorem 2.5 b).
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We recall that a Riemannian manifold is called conformally flat if for every

point it admits an open neighborhood conformally diffeomorphic to an open

set of an Euclidean space. Also, a hypersurface Mm ⊂ Nm+1 which admits a

principal curvature of multiplicity at least m − 1 is called quasi-umbilical.

Theorem 4.5: Let Mm, m ≥ 3, be a proper biharmonic hypersurface in S
m+1.

The following statements are equivalent

a) M is quasi-umbilical;

b) M is conformally flat;

c) M is an open part of S
m(1/

√
2) or of S

1(1/
√

2) × S
m−1(1/

√
2).

Proof. By Theorem 4.3 we get that a) is equivalent to c). Also, note that c)

obviously implies b).

In order to prove that b) implies a), recall that, for m ≥ 4, by a well-known

result (see, for example, [4]), any conformally flat hypersurface of a space form

is quasi-umbilical and we conclude.

For m = 3, as M is conformally flat, it results that the (0, 2)-tensor field

L = −Ricci + s
4 〈 , 〉, where s is the scalar curvature of M , is a Codazzi tensor

field, i.e.,

(4.20) (∇XL)(Y, Z) = (∇Y L)(X, Z), ∀X, Y, Z ∈ C(TM).

Using the notations from the proof of Theorem 4.1, the Gauss equation implies

Ricci(X, Y ) = 2〈X, Y 〉 + 3f〈A(X), Y 〉 − 〈A(X), A(Y )〉

and

(4.21) s = 6 + 9f2 − |A|2.

We use the same techniques as in the proof of Theorem 4.1. Suppose the

existence of an open subset U of M with 3 distinct principal curvatures.

If f is constant on U , using the above expressions, we conclude that U is flat

and that the product of any of its two principal curvatures is −1, thus we get

to a contradiction.

Assume that f is not constant on U . We can suppose that gradp f 6= 0, for all

p ∈ U . Consider X1 = gradf/| gradf |. As M is proper biharmonic, X1 gives a

principal direction with principal curvature k1 = − 3
2f . From k1 +k2 +k3 = 3f ,

we can write k2 = 9
4f + ε and k3 = 9

4f − ε, ε ∈ C∞(U). Using the Codazzi and

Gauss equations and equations (4.20) and (4.21) we show that f = aε5, a ∈ R,
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and combining all these relations we obtain that ε is a solution of a polynomial

equation with constant coefficients. Thus ε and f are constant.

Finally, we receive that M has at most two distinct principal curvatures and

this completes the proof.

For what concerns proper biharmonic hypersurfaces with constant mean cur-

vature in spheres we also have the following geometric property

Proposition 4.6: Let M be a proper biharmonic hypersurface with constant

mean curvature |H |2 = k in S
m+1. Then M has constant scalar curvature,

s = m2(1 + k) − 2m.

Proof. Since M is proper biharmonic of constant mean curvature, the squared

norm of its second fundamental form is |A|2 = m. By applying the Gauss

equation, the proof is complete.

In view of the above results we propose

Conjecture: The only proper biharmonic hypersurfaces in S
m+1 are the open

parts of hyperspheres S
m(1/

√
2) and of generalized Clifford tori S

m1(1/
√

2) ×
S

m2(1/
√

2), m1 + m2 = m, m1 6= m2.

5. Codimension 2 biharmonic pseudo-umbilical submanifolds in

spheres

We shall first prove a general result concerning the mean curvature of bihar-

monic pseudo-umbilical submanifolds in spheres

Theorem 5.1: Let M be a pseudo-umbilical submanifold of S
n, m 6= 4. If M

is biharmonic, then it has constant mean curvature.

Proof. Consider x ∈ M and let {Xi}i=1,m be a local orthonormal frame field

geodesic in x. As M is biharmonic, from (2.1), we get

(5.1) traceA∇⊥
(·)H

(·) = −m

4
grad(|H |2).

On the other hand, in x, by standard computations, we get
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traceA∇⊥
(·)H

(·) =
∑

i,j

{

Xi〈∇S
n

Xj
Xi, H〉 − 〈∇S

n

Xi
∇S

n

Xj
Xi, H〉

}

Xj ,

∑

i,j

Xi〈∇S
n

Xj
Xi, H〉Xj =

∑

i

∇Xi
AH(Xi),

∑

i,j

〈∇S
n

Xi
∇S

n

Xj
Xi, H〉Xj =

m

2
grad(|H |2).

Now, as M is pseudo-umbilical,
∑

i ∇Xi
AH(Xi) = grad(|H |2), thus

(5.2) traceA∇⊥
(·)H

(·) =
2 − m

2
grad(|H |2).

By putting together expressions (5.1) and (5.2), we obtain the desired

result.

The first consequence of this result is an estimate for the scalar curvature of

biharmonic pseudo-umbilical submanifolds in spheres.

Proposition 5.2: Let Mm be a biharmonic pseudo-umbilical submanifold of

S
n, m 6= 4. Then its scalar curvature s satisfies

s ≤ 2m(m − 1).

The equality holds if and only if M is open in S
m(1/

√
2).

Proof. From Theorem 2.13, the scalar curvature s of a pseudo-umbilical sub-

manifold M of S
n satisfies s ≤ m(m − 1)(1 + |H |2), and equality holds if and

only if M is contained in an m-sphere of S
n.

By using Theorems 5.1 and 2.10, as M is biharmonic, it follows that

its constant mean curvature satisfies |H | ∈ (0, 1], and this completes the

proof.

For what concerns biharmonic pseudo-umbilical submanifolds of codimension

two we obtain the following rigidity result.

Theorem 5.3: Let Mm be a pseudo-umbilical submanifold of S
m+2, m 6= 4.

Then M is proper biharmonic if and only if it is minimal in S
m+1(1/

√
2).

Proof. From the hypotheses, using Theorem 5.1, we deduce that M has con-

stant mean curvature. Now, by using Theorem 2.14, it follows that any such
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submanifold is either minimal in S
m+2 or minimal in a hypersphere of S

m+2.

But M is proper biharmonic in S
m+2 and, from Theorem 2.6, we conclude.

Replace now the condition on M to be pseudo-umbilical with that of being a

hypersurface of a hypersphere in S
m+2.

Theorem 5.4: Let Mm be a hypersurface of S
m+1(a) ⊂ S

m+2, a ∈ (0, 1).

Assume that M is not minimal in S
m+1(a). Then it is biharmonic in S

m+2 if

and only if a > 1/
√

2 and M is open in S
m(1/

√
2) ⊂ S

m+1(a).

Proof. Note that the converse follows immediately from Theorem 2.6.

In order to prove the other implication, denote by j and i the inclusion maps

of M in S
m+1(a) and of S

m+1(a) in S
m+2, respectively.

We consider

S
m+1(a) =

{

(x1, . . . , xm+2,
√

1 − a2) ∈ R
m+3 :

m+2
∑

i=1

(xi)2 = a2

}

⊂ S
m+2.

Then

C
(

TS
m+1(a)

)

=

{

(X1, . . . , Xm+2, 0) ∈ C(TR
m+3) :

m+2
∑

i=1

xiX i = 0

}

,

while

η =
1

c

(

x1, . . . , xm+2,− a2

√
1 − a2

)

is a unit section in the normal bundle of S
m+1(a) in S

m+2, where c2 = a2

1−a2 ,

c > 0.

By computing the tension and bitension fields of φ = i ◦ j, one gets

τ(φ) = τ(j) − m

c
η,

and

τ2(φ) = τ2(j) −
2m

c2
τ(j) +

1

c

{

|τ(j)|2 − m2

c2
(c2 − 1)

}

η.

By the hypotheses M is biharmonic in S
m+2, thus

|τ(j)|2 =
m2

c2
(c2 − 1) =

m2

a2
(2a2 − 1)

and, since τ(j) 6= 0, this implies a > 1/
√

2.

Also,

|τ(φ)|2 = |τ(j)|2 + m2/c2 = m2.
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This implies that the mean curvature of M in S
m+2 is 1, thus, using Theorem

2.10, M has to be a minimal submanifold of the hypersphere S
m+1(1/

√
2) ⊂

S
m+2, i.e., it is pseudo-umbilical and with parallel mean curvature vector field

in S
m+2.

Since M ⊂ S
m+1(a) is pseudo-umbilical in S

m+2 it results pseudo-umbilical,

and thus totally umbilical, in S
m+1(a). From here it follows that M is an open

subset of a hypersphere S
m(r) in S

m+1(a). But it is proper biharmonic in S
m+2,

thus r = 1/
√

2 and we conclude.

Corollary 5.5: Let M be a proper biharmonic hypersurface of a hypersphere

S
m+1(a) in S

m+2, a ∈ (0, 1). Then a ≥ 1√
2
. Moreover,

a) if a = 1/
√

2, then M is minimal in S
m+1(1/

√
2)

b) if a > 1/
√

2, then M is an open part of S
m(1/

√
2).

We also use Theorem 5.4 in order to prove

Theorem 5.6: Let M2 be a proper biharmonic surface with parallel mean

curvature vector field in S
n. Then M is minimal in S

n−1(1/
√

2).

Proof. B.-Y. Chen and S.-T. Yau proved (see [4, p. 106]) that the only non-

minimal surfaces with parallel mean curvature vector field in S
n are either

minimal surfaces of small hyperspheres S
n−1(a) of S

n or surfaces with constant

mean curvature in 3-spheres of S
n.

If M is a minimal surface of a small hypersphere S
n−1(a), then it is biharmonic

in S
n if and only if a = 1/

√
2 (see Theorem 2.6).

If M is a surface in a 3−sphere S
3(a), a ∈ (0, 1], of S

n then we can consider

the composition

M −→ S
3(a) −→ S

4 −→ S
n.

Note that M is biharmonic in S
n if and only if it is biharmonic in S

4. From

Theorem 5.4, for a ∈ (0, 1), we conclude that either a = 1/
√

2 and M is minimal

in S
3(1/

√
2), or a > 1/

√
2 and M is an open part of S

2(1/
√

2). For a = 1, from

Theorem 2.5, also follows that M is an open part of S
2(1/

√
2).

In all cases M is minimal in S
n−1(1/

√
2).

Remark 5.7: All the results we have proved so far could suggest that the codi-

mension 2 biharmonic submanifolds of S
n arise from minimal submanifolds of

S
n−1(1/

√
2). This is not the case as shown by the following
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Theorem 5.8 ([1]): Let φ : M3 → S
5 be a proper biharmonic anti-invariant

immersion. Then the position vector field x0 = i ◦ φ = x0(u, v, w) of M in R
6

is given by

x0(u, v, w) = (1/
√

2)eiw(eiu, ie−iu sin
√

2v, ie−iu cos
√

2v),

where i : S
5 → R

6 is the canonical inclusion.

Remind that if we consider a Sasakian manifold (N, Φ, ξ, η, g) and a subman-

ifold M tangent to ξ, M is called anti-invariant if Φ maps any tangent vector

to M which is normal to ξ to a vector which is normal to M . Also, a map

φ : M → S
n is said to be full if the image φ(M) is contained in no hypersphere

of S
n.

Note that φ is a full proper biharmonic anti-invariant immersion from a 3-

dimensional torus into S
5. The immersion φ has constant mean curvature, is

not pseudo-umbilical and its mean curvature vector is not parallel in S
5. In

addition to these properties, since |H | = 1/3, from Theorem 3.1 we conclude

that x0 is a 2-type submanifold of R
6 with eigenvalues 2 and 4.

We also note that the product S
1(1/

√
2) × Mm, where M is a minimal non-

totally geodesic hypersurface of S
m+1(1/

√
2), is a full proper biharmonic sub-

manifold of S
m+3 of codimension 2.

Since all the known examples of proper biharmonic submanifolds in spheres

have constant mean curvature we propose the following

Conjecture: Any biharmonic submanifold in S
n has constant mean curva-

ture.
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